Parallel temperatures in supersonic beams: ultracooling of light atoms seeded in a heavier carrier gas.

نویسندگان

  • A Miffre
  • M Jacquey
  • M Büchner
  • G Trénec
  • J Vigué
چکیده

Supersonic expansion is a very powerful tool to produce an atomic beam with a well defined velocity and, by seeding a test gas in such an expansion, the energy of the test gas can be transferred, at least partially, to the very-low-temperature carrier gas. The case usually studied is the one of a heavy gas seeded in a light carrier gas and, in this case, the parallel temperature of the seeded gas is always larger than the one of the carrier gas. In the present paper, we study the opposite case which has received less attention: when a light gas is seeded in a heavier carrier gas, the parallel temperature can be substantially lower for the seeded gas than for the carrier gas. This effect has been first observed by Campargue and co-workers in 2000, in the case of atomic oxygen seeded in argon. In the present paper, we develop a theoretical analysis of this effect, in the high dilution limit, and we compare our theoretical results to several experimental observations, including a set of measurements we have made on a beam of lithium seeded in argon. The agreement between theory and experiments is good.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION

The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...

متن کامل

Glass slits for collimating particle beams

The scientific goal of our experiments that require glass slits is the measurement of alternating current polarizabilities of clusters. To measure ac cluster polarizabilities, we need to generate and collimate a dense beam of cold clusters. The glass slits reported here were critical in our ability to generate and collimate this beam. For example, these slits made possible our recently reported...

متن کامل

Kinetic Phenomena in Spherical Expanding Flows of Binary Gas Mixtures

Diffusion and kinetic effects in the spherical expanding  ows of argon–helium mixtures have been studied using the direct simulation Monte Carlo technique at the Knudsen numbers from 0.0015 to 0.03 and pressure ratios from 100 to 10,000. Similarity analysis was used to analyze the  ow structure in supersonic  ow region, spherical shock wave, and subsonic area behind it. Both kinetic and diff...

متن کامل

Direct Simulation of Low-Pressure Supersonic Gas Expansions and its Experimental Verification

The use of gas expansions to generate atomic or molecular beams has become a standard technique in nuclear and hadron physics for the production of polarized ion beams and gas targets. A direct simulation Monte Carlo method was used to understand the processes occurring in an expansion of highly dissociated hydrogen or deuterium gas at low densities. The results were verified in several measure...

متن کامل

Nanofabrication by magnetic focusing of supersonic beams

We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film, into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 9  شماره 

صفحات  -

تاریخ انتشار 2005